DIABETIC EMERGENCIES MR COLIN DIBBLE, CONSULTANT IN EMERGENCY MEDICINE, NMGH ### Objectives #### Understand: - * Pathophysiology - * Clinical presentation - * Hypoglycaemia - * DKA - ***** HONK - ***** Complications #### Introduction - * Common, affects 1.3 million people and increasing, 2-3% population, 25-30/100000 kids, 9% of hospital costs - * Life threatening if not acted on promptly and correctly - * More common in ethnic minorities/older age groups, in less affluent, men - * There is a NSF for diabetes ### With Insulin ### Without Insulin #### Insulin Effects - * Reduced release of glucose by liver - * Increased uptake of glucose eg in skeletal muscle - * Inhibit triglyceride breakdown to glycerol and free fatty acids (& stimulate its formation) - ** Inhibits protein breakdown to free amino acids (which can themselves increase hepatic production) * Type 1: IDDM, usually juvenile onset, damage to pancreatic β cells, always need insulin, more prone to DKA. 30% twin concordance - * Type 2: NIDDM, usually adults >40yrs, more common in men, asians, obesity, lack of exercise, high calorie diet. Decreased insulin and insulin resistance. 80% twin concordance. - * Lack of insulin results in failure of uptake and utilisation of glucose in cells causing rise in blood glucose. Long term risks of CVS/renal/eye disease. - * Acute complications DKA, HONK, hypoglycaemia. Long term in DM: IHD, Blindness, renal failure, arterial dz-amputations #### Clinical Presentation - * History polydispia, polyuria, weight loss with increased appetite - * May have reduced GCS, sweaty, clammy, tachycardia and fits (hypo) - * May be acidotic, shocked, coma (DKA). Coma without acidosis, raised osmolarity- HONK - * fasting BS ≥7mmol/l, random ≥11.1 mmol/l # Hypoglycaemia = glucose < 3 mmol/l - * Neonates or DM missed meals or overdosed insulin/oral hypoglycaemic agents, increased activity - *** EXPLAIN** - * EXogenous drugs - * Pituitary insufficiency - * Liver failure - * Addison's disease - * Islet cell tumours - * Non-pancreatic neoplasms ## Hypoglycaemia - * Think of in any coma, may have confusion, personality change appear drunk, sweaty, tachycardia, fits, focal signs - * Check BM and formal sugar but treat - * Oral if awake - * SC/IV/IM glucagon Img NOT in liver disease, alcohol or malnourished or sulphonyl urea OD. Doesn't work if on beta blockers - * IV dextrose 50ml 50%,250ml 10% (5ml/kg) ### Hypoglycaemia - * If cause found, corrected and patient well, discharge - * If not responding further investigate eg CT and admit - * If OD eg sulphonyl ureas, admit (long duration of action). May need continuous infusion #### DKA: Introduction - * More common in children, life threatening. May have developed over 2-3 days. Often compliance issues. - * Excess glycogenolysis with high glucagon levels and low insulin and raised sugar levels results in acidosis, fluid loss (osmotic diuresis), hypotension and shock - * Caused by four 'I's (Infection, Infarction, Insufficient insulin and Intercurrent illness) - * Death from hypokalaemia, cerebral oedema, & aspiration pneumonia #### DKA: Features - * S/S of DM, plus D&V and abdominal pain - * Hyperventilation (Kussmaul) and acetone breath - * Altered GCS, dehydration and +/- shock - * Urinary glucose/ketones - * \pH, \tau_K+, \lambda Na, \tauGlucose, \tau_Urea/creatinine - * High anion gap: (Na++K+-HCO3--Cl-){>14-18} - * Check urine, CXR, blood cultures for infection ## DKA: Management I - * A: may need RSI if airway risk from coma/vomiting etc - *** B**: 0₂ 100% by mask - * C: IV access and initial resuscitation bolus fluids of Normal saline 1-2 litres (10ml/kg aliquots up to 30ml/kg). Get routine bloods/cultures/gases. May need CVP. - * D: RSI if less than 8, (also may need CT) ## DKA: Management II - * Add potassium after bolus resuscitation fluid, 40mmol/l unless anuric - * Strict fluid record, Paeds: Maintenance plus deficit correction over 48 hours once resuscitated. ``` Maintenance requirements Age 0 - 2 yrs 80 ml/kg/24 hrs 3 - 5 70 ml/kg/24 hrs 6 - 9 60 ml/kg/24 hrs 10 - 14 50 ml/kg/24 hrs adult (>15) 30 ml/kg/24 hrs ``` - * Adults: start NS 2L/2hrs, then 2 → 4 hourly. 5% dextrose when BM<11</p> - * Insulin 6u/hr (0.1u/kg/hr) IV. NO loading dose #### HONK Hyperosmolar non-ketotic - * Usually in older patients - * Calculate osmolality: [2(Na++K+)+Urea+Glucose], Osmolar Gap= Calculated-Actual (NR: 15-20) - * Similar treatment to DKA, (initially NS). Consider 0.45% NS if osmolarity >320mmol/l ### Complications - * Cerebral Oedema - * Shock - * Hypokalaemia - * Aspiration pneumonia - * Pulmonary oedema ### Summary - * Insulin lack causes hyperglycaemia, high triglycerides and protein breakdown - * There is Type I (IDDM) & Type II (NIDDM) - * Hypoglycaemia can mimic drunkenness - * Glucagon not in malnourished for hypo - * DKA, look for infection and focus on fluids/ potassium and then insulin. Avoid rapid drop in glucose